Hermann Ackermann, Wolfram Ziegler
Audra Ames, Sara Wielandt, Dianne Cameron, Stan Kuczaj
David Ardell, Noelle Anderson, Bodo Winter
Rie Asano, Edward Ruoyang Shi
Mark Atkinson, Kenny Smith, Simon Kirby
Andreas Baumann, Christina Prömer, Kamil Kazmierski, Nikolaus Ritt
Christian Bentz
Aleksandrs Berdicevskis, Hanne Eckhoff
Richard A. Blythe, Alistair H. Jones, Jessica Renton
Cedric Boeckx, Constantina Theofanopoulou, Antonio Benítez-Burraco
Megan Broadway, Jamie Klaus, Billie Serafin, Heidi Lyn
Jon W. Carr, Kenny Smith, Hannah Cornish, Simon Kirby
Federica Cavicchio, Livnat Leemor, Simone Shamay-Tsoory, Wendy Sandler
Zanna Clay, Jahmaira Archbold, Klaus Zuberbuhler
Katie Collier, Andrew N. Radford, Balthasar Bickel, Marta B. Manser, Simon W. Townsend
Jennifer Culbertson, Simon Kirby, Marieke Schouwstra
Christine Cuskley, Vittorio Loreto
Christine Cuskley, Bernardo Monechi, Pietro Gravino, Vittorio Loreto
Dan Dediu, Scott Moisik
Sabrina Engesser, Amanda R. Ridley, Simon W. Townsend
Dankmar Enke, Roland Mühlenbernd, Igor Yanovich
Kerem Eryilmaz, Hannah Little, Bart de Boer
Nicolas Fay, Shane Rogers
Maryia Fedzechkina, Becky Chu, T. Florian Jaeger, John Trueswell
Olga Feher, Kenny Smith, Elizabeth Wonnacott, Nikolaus Ritt
Piera Filippi, Sebastian Ocklenburg, Daniel Liu Bowling, Larissa Heege, Albert Newen, Onur Güntürkün, Bart de Boer
Piera Filippi, Jenna V. Congdon, John Hoang, Daniel Liu Bowling, Stephan Reber, Andrius Pašukonis, Marisa Hoeschele, Sebastian Ocklenburg, Bart de Boer, Christopher B. Sturdy, Albert Newen, Onur GÜntÜrkÜn
Molly Flaherty, Katelyn Stangl, Susan Goldin-Meadow
Marlen Fröhlich, Paul H Kuchenbuch, Gudrun Müller, Barbara Fruth, Takeshi Furuichi, Roman M Wittig, Simone Pika
Victor Gay, Daniel Hicks, Estefania Santacreu-Vasut
Andreea Geambasu, Michelle J. Spierings, Carel ten Cate, Clara C. Levelt
Matt Hall, Russell Richie, Marie Coppola
Stefan Hartmann, Peeter Tinits, Jonas Nölle, Thomas Hartmann, Michael Pleyer
Wolfram Hinzen, Joana Rosselló
Rick Janssen, Bodo Winter, Dan Dediu, Scott Moisik, Sean Roberts
Rick Janssen, Dan Dediu, Scott Moisik
Jasmeen Kanwal, Kenny Smith, Jennifer Culbertson, Simon Kirby
Deborah Kerr, Kenny Smith
Buddhamas Kriengwatana, Paola Escudero, Anne Kerkhoven, Carel ten Cate
Adriano Lameira, Jeremy Kendal, Marco Gamba
Molly Lewis, Michael C. Frank
Casey Lister, Tiarn Burtenshaw, Nicolas Fay, Bradley Walker, Jeneva Ohan
Hannah Little, Kerem Eryılmaz, Bart de Boer
Hannah Little, Kerem Eryılmaz, Bart de Boer
Giuseppe Longobardi, Armin Buch, Andrea Ceolin, Aaron Ecay, Cristina Guardiano, Monica Irimia, Dimitris Michelioudakis, Nina Radkevich, Gerhard Jaeger
Heidi Lyn, Stephanie Jett, Megan Broadway, Mystera Samuelson
Michael Mcloughlin, Luca Lamoni, Ellen Garland, Simon Ingram, Alexis Kirke, Michael Noad, Luke Rendell, Eduardo Miranda
Adrien Meguerditchian, Damien Marie, Konstantina Margiotoudi, Scott A. Love, Alice Bertello, Romain Lacoste, Muriel Roth, Bruno Nazarian, Jean-Luc Anton, Olivier Coulon
Jérôme Michaud
Ashley Micklos
Marie Montant, Johannes Ziegler, Benny Briesemeister, Tila Brink, Bruno Wicker, Aurélie Ponz, Mireille Bonnard, Arthur Jacobs, Mario Braun
Yasamin Motamedi, Marieke Schouwstra, Kenny Smith, Simon Kirby
Roland Mühlenbernd, Johannes Wahle
Tomoya Nakai, Kazuo Okanoya
Savithry Namboodiripad, Daniel Lenzen, Ryan Lepic, Tessa Verhoef
Alan Nielsen, Dieuwke Hupkes, Simon Kirby, Kenny Smith
Bill Noble, Raquel Fernández
Irene M. Pepperberg, Katia Zilber-Izhar, Scott Smith
Lynn Perry, Marcus Perlman, Gary Lupyan, Bodo Winter, Dominic Massaro
Ljiljana Progovac
Andrea Ravignani, Tania Delgado, Simon Kirby
Terry Regier, Alexandra Carstensen, Charles Kemp
Lilia Rissman, Laura Horton, Molly Flaherty, Marie Coppola, Annie Senghas, Diane Brentari, Susan Goldin-Meadow
Gareth Roberts, Mariya Fedzechkina
Carmen Saldana, Simon Kirby, Kenny Smith
Carlos Santana
William Schueller, Pierre-Yves Oudeyer
Catriona Silvey, Christos Christodoulopoulos
Katie Slocombe, Stuart Watson, Anne Schel, Claudia Wilke, Emma Wallace, Leveda Cheng, Victoria West, Simon Townsend
Ruth Sonnweber, Andrea Ravignani
Michelle Spierings, Carel ten Cate
Kevin Stadler, Elyse Jamieson, Kenny Smith, Simon Kirby
Monica Tamariz, Joleana Shurley
Monica Tamariz, Jon W. Carr
Bill Thompson, Heikki Rasilo
Oksana Tkachman, Carla L. Hudson Kam
Simon Townsend, Andrew Russell, Sabrina Engesser
Francesca Tria, Vittorio Loreto, Vito Servedio, S. Mufwene Salikoko
Anu Vastenius, Jordan Zlatev, Joost Van de Weijer
Tessa Verhoef, Carol Padden, Simon Kirby
Slawomir Wacewicz, Przemyslaw Zywiczynski, Arkadiusz Jasinski
Bodo Winter, David Ardell
Bodo Winter, Lynn Perry, Marcus Perlman, Gary Lupyan
Marieke Woensdregt, Kenny Smith, Chris Cummins, Simon Kirby
Eva Zehentner, Andreas Baumann, Nikolaus Ritt, Christina Prömer
Keywords: linguistic structure, interactive pressures, structural adaptation, signal disruption, conversational repair
Short description: Interactive pressures help shape the emergence of linguistic structure
Abstract:
Linguistic traits are often seen as reflecting cognitive biases and constraints (e.g. Christiansen & Chater, 2008). However, language must also adapt to properties of the channel through which communication between individuals occurs. Perhaps the most basic aspect of any communication channel is noise. Communicative signals can be blocked, degraded or distorted by other sources in the environment. This poses a fundamental problem for communication. On average, channel disruption accompanies problems in conversation every 3 minutes (27% of cases of other-initiated repair, Dingemanse et al., 2015). Linguistic signals must adapt to this harsh environment. While modern language structures are robust to noise (e.g. Piantadosi et al., 2011), we investigate how noise might have shaped the early emergence of structure in language.
The obvious adaptation to noise is redundancy. Signals which are maximally different from competitors are harder to render ambiguous by noise. Redundancy can be increased by adding differentiating segments to each signal (increasing the diversity of segments). However, this makes each signal more complex and harder to learn. Under this strategy, holistic languages may emerge. Another strategy is reduplication - repeating parts of the signal so that noise is less likely to disrupt all of the crucial information. This strategy does not increase the difficulty of learning the language - there is only one extra rule which applies to all signals. Therefore, under pressures for learnability, expressivity and redundancy, reduplicated signals are expected to emerge.
However, reduplication is not a pervasive feature of words (though it does occur in limited domains like plurals or iconic meanings). We suggest that this is due to the pressure for redundancy being lifted by conversational infrastructure for repair. Receivers can request that senders repeat signals only after a problem occurs. That is, robustness is achieved by repeating the signal across conversational turns (when needed) instead of within single utterances.
As a proof of concept, we ran two iterated learning chains with pairs of individuals in generations learning and using an artificial language (e.g. Kirby et al., 2015). The meaning space was a structured collection of unfamiliar images (3 shapes x 2 textures x 2 outline types). The initial language for each chain was the same written, unstructured, fully expressive language. Signals produced in each generation formed the training language for the next generation. Within each generation, pairs played an interactive communication game. The director was given a target meaning to describe, and typed a word for the matcher, who guessed the target meaning from a set. With a 50% probability, a contiguous section of 3-5 characters in the typed word was replaced by ‘noise’ characters (#). In one chain, the matcher could initiate repair by requesting that the director type and send another signal. Parallel generations across chains were matched for the number of signals sent (if repair was initiated for a meaning, then it was presented twice in the parallel generation where repair was not possible) and noise (a signal for a given meaning which was affected by noise in one generation was affected by the same amount of noise in the parallel generation).
For the final set of signals produced in each generation we measured the signal redundancy (the zip compressibility of the signals), the character diversity (entropy of the characters of the signals) and systematic structure (z-score of the correlation between signal edit distance and meaning hamming distance). In the condition without repair, redundancy increased with each generation (r=0.97, p=0.01), and the character diversity decreased (r=-0.99,p=0.001) which is consistent with reduplication, as shown below (part of the initial and the final language):
Linear regressions revealed that generations with repair had higher overall systematic structure (main effect of condition, t = 2.5, p < 0.05), increasing character diversity (interaction between condition and generation, t = 3.9, p = 0.01) and redundancy increased at a slower rate (interaction between condition and generation, t = -2.5, p < 0.05).
That is, the ability to repair counteracts the pressure from noise, and facilitates the emergence of compositional structure. Therefore, just as systems to repair damage to DNA replication are vital for the evolution of biological species (O’Brien, 2006), conversational repair may regulate replication of linguistic forms in the cultural evolution of language. Future studies should further investigate how evolving linguistic structure is shaped by interaction pressures, drawing on experimental methods and naturalistic studies of emerging languages, both spoken (e.g Botha, 2006; Roberge, 2008) and signed (e.g Senghas, Kita, & Ozyurek, 2004; Sandler et al., 2005).
Citation:
Macuch Silva V. and Roberts S. (2016). Language Adapts To Signal Disruption In Interaction. In S.G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Fehér & T. Verhoef (eds.) The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Available online: http://evolang.org/neworleans/papers/20.html