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Signalling games involving agent learners exist in various guises, from the
game-theoretic Roth-Erev learners of Skyrms (2010), to the Naming Game
(Steels, 1997), and agents employing varieties of observational learning (e.g.
Oliphant & Batali, 1996; Smith, 2002). The agent-based nature of this work
means that the resulting dynamics have an inherently unpredictable character: in-
dividual simulations may or may not be representative of average behaviour, if
such a thing exists at all. Typically, the best way of overcoming this problem is
by running large numbers of simulations and observing the aggregate behaviour.
This contrasts with other frameworks — for example, classical or evolutionary
game theory. In these cases, there is some macro-level property of the model
which drives the overall dynamic of the game. For example, fitness of individual
agents in evolutionary models is evaluated using the global average communica-
tive success. Because of this, it is possible to calculate the mean-field dynamic
for any known mixture of strategies in the population, revealing any attractors or
stable points. In the case of agent-based models, because overall dynamics are
completely determined by individual pairwise interactions — at the micro-level
(Miihlenbernd, 2013) — the likely result of any interaction is not a direct con-
sequence of the global communicative success of a population, which as a result
cannot serve to describe the overall dynamics. Hence, identifying attractors and
stable points poses a much harder problem. In order to resolve this problem, we
introduce a new information-theoretic measure of optimality which can describe
the overall dynamics of signalling populations of learning agents.

Typically, information theory (Shannon, 1948) has proven difficult to apply
to problems involving meaningful communication as it has no way of describing
semantic or referential content. Although there have been attempts to address this
(e.g. Corominas-Murtra, Fortuny, & Solé, 2014), these still include a problematic
macro-level term such as described above. However, we are able to avoid this un-
der the assumption that agent signalling production and reception behaviours are
derived from a single shared set of signal meaning associations. In this case, we
can use the signal production behaviour of individual agents to describe their in-
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dividual optimality in terms of the conditional entropy of meanings given signals,
H(M|S), where low entropy represents low ambiguity. Employing this measure,
we show that the overall entropy of a system has two components determined by
the average individual entropy and average alignment entropy: individual entropy
measures the optimality of a single agent’s own signalling system, while align-
ment entropy is the extra uncertainty due to the divergence of any agent from
the population mean. We draw on results such as (Xue, 2006) which show that
any population of agents which imitate each other with positive probability will
inevitably drive the alignment entropy to zero.

This allows us to dissect the overall dynamics of any signalling game involving
associative agents, which we do by analysing the pairwise interaction defined by
its model of learning. In particular, we can describe any population as a point in an
entropy state-space. Certain points within this space represent final stable states
of the population in terms of their optimality. As such, we are able to show that
the way ‘imitative’ learning by itself causes populations to move around the state-
space resembles a type of genetic drift. Moreover, we identify the features which
must exist to ensure populations develop optimal signalling: firstly, the imitative
property described above; secondly, the learning model must on average reduce
conditional entropy in any pairwise interaction. Finally, there must be a way to
prevent learning slowdown: i.e. agents must retain plasticity. Using these three
factors as a diagnostic, we are able to determine the dynamics of any population
model involving associative signalling agents without recourse to numerical sim-
ulation, including whether or not it will develop optimal signalling. This applies
to not just modelling work, but any theory of the emergence of novel lexicons.
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