DOES LEARNING FAVOUR COMMUNICATIVE EFFICIENCY?

KENNY SMITH and JENNIFER CULBERTSON

*Corresponding Author: kenny.smith@ed.ac.uk
1Centre for Language Evolution, University of Edinburgh, UK

Natural languages are well-designed for communication, exhibiting structural properties which optimally trade off communicative function and efficiency (e.g. Zipf, 1949; Piantadosi et al., 2012; Jäger, 2007). These properties of language are typically explained as a consequence of modifications made by speakers during language use; in these accounts, learning plays no role in structuring languages to be communicatively optimal, and indeed simplicity biases in learning can erode communicative utility if unchecked (Kirby et al., 2008; Silvey et al., 2015).

However, several recent papers purport to show an improvement in communicative function through learning alone (e.g. Fedzechkina et al., 2012; Carstensen et al., 2015). Fedzechkina et al. (2012) show that participants trained on an artificial language featuring variable case marking will restructure that language in ways which would increase its communicative function, despite never using the language to communicate. They train participants over 4 days on an artificial language for describing events in which animate agents perform actions on animate or inanimate patients. The training language has variable word order, meaning that utterances are potentially ambiguous if the patient of an event is animate (but not if it is inanimate, since inanimates are never agents in their stimuli). The training language features case marking which, where it occurs, serves to eliminate this ambiguity: 60% of objects are case-marked, but animates and inanimates are equally likely to be case marked, yielding a distribution of case markers which is not communicatively optimal. Fedzechkina et al. found that learners increased the frequency of case marking on animate patients, and reduced it on inanimate patients. This results in a more communicatively efficient system, suggesting that learning may in fact play a critical role in structuring languages to be communicatively optimal, a result which runs contrary to the accounts reviewed above.

In Experiment 1 we replicated Fedzechkina et al.’s experiment and result (see Figure 1): we found that participants preferentially marked animate patients at later days. However, this replication highlighted a surprising feature of their stimuli: animates which are agents are never patients, and vice versa. By day 4 our participants were therefore able to correctly interpret sentences involving two animates with near-perfect accuracy even if the object was not case-marked; nonethe-
less they exhibited the pattern of case-marking that is putatively driven by the ambiguity of unmarked animate patients. We re-ran the experiment with a modified set of stimuli where all animates served as agents and patients, which should increase the utility of differential case marking. While Experiment 2 showed a modest increase in case marking on all objects, there was not a significantly stronger tendency to casemark animates (see Figure 1). Experiment 2 also featured an additional test on Day 4 where participants used the language to communicate with their alien language tutor; here, where communicative utility matters, we again saw an overall increase in case marking, but not preferentially on animates.

Overall, our results cast some doubt on the Fedzechkina et al.’s claim that biases in learning favour communicative utility: while their result is robust, this interpretation is at odds with results elsewhere in the literature, and makes predictions which do not appear to be borne out in their paradigm. We are currently exploring whether restructuring of the input in this case might be due to biases in learning which favour conditioning of variation (cf. Hudson Kam & Newport, 2009): their results may represent an artifactual case where biases in learning yield languages which are coincidentally better for communication. Thus, even if learning does not directly drive communicative function, it nevertheless plays an important explanatory role in accounting for the design of natural languages.
Acknowledgements

Funding sources redacted. Funding sources redacted. Funding sources redacted.
Funding sources redacted. Funding sources redacted. Funding sources redacted.

References

the lab tends toward informative communication. In Proceedings of the
37th annual meeting of the cognitive science society. Austin, TX: Cognitive
Science Society.

restructure their input to facilitate efficient communication. Proceedings of
the National Academy of Sciences, USA, 109, 17897–17902.

Hudson Kam, C. L., & Newport, E. L. (2009). Getting it right by getting it wrong:

Jäger, G. (2007). Evolutionary game theory and typology, a case study. Language,

laboratory: an experimental approach to the origins of structure in human
language. Proceedings of the National Academy of Sciences, USA, 105,
10681-10686.

Piantadosi, S. T., Tily, H., & Gibson, E. (2012). The communicative function of
