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One of the driving forces of language evolution is the selection of variants that suit the com-
municative needs of its users. Crucially, fitness of linguistic variants may largely depend on the
structure of the environment in which language is learned, transmitted, and used. This hypoth-
esis has gained support in various domains. We apply it in the context of scalar terms with a
major focus on quantifiers, such as most. Based on a model that combines logic and evolution-
ary game theory, we argue that such signals might have evolved as stable semantic units through
adaptation to general communicative principles and distributional properties of the environment
such as normality.

1. Introduction

During the development across various timescales, languages tend to adopt vari-
ants exhibiting greater communicative fitness (Christiansen & Chater, 2016a).
Crucially, the fitness of linguistic variants may largely depend on the structure of
the environment in which language is learned, transmitted, and used. This theoret-
ical stance has gained support in several domains, including spatial descriptions
(Levinson, 1996, 2003), color categories (Lindsey & Brown, 2002; Plewczyński
et al., 2014), kinship terms (Kemp & Regier, 2012), and constituent order (Chris-
tensen, Fusaroli, & Tylén, 2016). Quantifiers, despite their ubiquity in natural
language, are less explored from this perspective, with notable exceptions focus-
ing on fuzziness and context-dependence (Pauw & Hilferty, 2012, 2016).

The present paper is an attempt to model the influence of environmental con-
straints on the evolution of scalar terms, and of proportional quantifiers in partic-
ular. Most is a paradigmatic example of such a quantifier: it stands out in terms of
frequency in natural language corpora (Szymanik & Thorne, 2017) and is present
across many languages (Katsos et al., 2016). Our goal is to provide some rea-
sons that most might have acquired and sustained its present semantic threshold,
commonly associated with 1/2 (Peters & Westerståhl, 2006). Interestingly, our ar-
gument heavily relies on the analysis of a much broader class of scalar concepts.

We briefly describe the notion of the scalar concept in Section 2. Section 3
describes a communication game based on the discrimination of two contexts. In



Section 4, we analyse those properties of scalar terms that are important when
considering their evolution. We present our main argument in Section 5 and the
conclusion in Section. 6.

2. Scalar Concepts

A scalar concept is represented as a threshold dividing a given range of values.
This is easily modelled, for example, as a real/rational number dividing an (ex-
tended) interval of real/rational numbers. We do not consider the direction of
monotonicity here: we assume that a scalar concept comprises all values exceed-
ing the corresponding threshold.

Tentative examples of scalar concepts are tall and most. Tall may be referred
to as a first-order concept, as possible thresholds are properties of individual ob-
jects, namely different values of height. Most may be referred to as a second-order
concept, as possible thresholds are not properties of individual objects, but rather
properties of sets of individual objects (Barwise & Cooper, 1981). In this particu-
lar case, the relevant property is identified with a fraction of cardinalities between
corresponding sets. Recall that a typical context for the statement Most As are B
consists of two finite sets A,B. The standard meaning of most is as follows: Most
As are B is true iff |A ∩B| > |B − A|, equivalently |A ∩B|/|B| > 1/2. Substi-
tuting other proportions for 1/2 yields other proportional quantifier meanings.

3. Discrimination Game

To put scalar terms into a communicative setting, consider agents using one shared
signal, optionally marked with negation. At any given time, an agent associates
one particular threshold with the signal, but different agents may associate it with
different thresholds. Suppose we have an agent using threshold p and his inter-
locutor using q. They want to discriminate between two (shared) contexts c and
c′.1 Such a game is a success iff both players can tell the difference between the
contexts using their current strategies.2 Formally, players receive the payoff 1 iff
min(c, c′) ≤ min(p, q) ≤ max(p, q) < max(c, c′). Otherwise, the payoff is 0.

The variability of contexts is modelled by a random variableX (environment).
Each time a game is to be played, two contexts are drawn from X . When two
players meet and they happen to use strategies p and q, the likelihood that they are
both capable of discriminating between upcoming contexts is

DX,p,q = 2P (X ≤ min(p, q))P (X > max(p, q)). (1)

1We use the term “context” in a different way then does Steels (1997). It it is more natural to speak
about a quantified sentence evaluated against a context (rather than against object or event happening
in a shared context).

2If at least one of the players cannot do this using his current strategy, we view this as a failure: the
sender has no incentive to use such a (non-discriminative) signal, while the receiver will not understand
which of the contexts is the topic. Our game is a simplified version of that considered in Pauw and
Hilferty (2012).



which are the chances of obtaining a pair of random deviates (c, c′) satisfying
p ∈ [c, c′) and q ∈ [c, c′). Observe that, when p = q, we have DX,p,q =
2P (X ≤ p)P (X > p). We will use DX,r to denote the value of DX,r,r.

4. Look at Evolution

We want to compare various strategies with regard to their communicative fitness
under plausible environmental constraints. Our chief assumption about the envi-
ronment is normality, i.e. X ∼ N (µ, σ2), for some µ ∈ R and σ > 0. This is a
tentative but fairly realistic assumption, as many properties are known to behave
in this way. Our analysis is based on standard tools of evolutionary game theory.3

We consider a large population of agents who are paired randomly to play the
discrimination game. For simplicity, we confine our attention to two co-existing
strategies, p and q. Let xp = 1 − x and xq = x be the fractions of the popu-
lation using strategies p and q, respectively. The communicative fitness of a p-
and a q-individual, given in Equations 2a and 2b, is expressed as the expected
payoff she receives from a discrimination game while being randomly paired with
other agents (the chances of meeting someone endorsing p and q are 1− x and x,
respectively):

Ep(x,X) = (1− x)DX,p + xDX,p,q (2a)

Eq(x,X) = (1− x)DX,p,q + xDX,q (2b)

Given strategies p, q and a random variable X , p is said to be evolutionarily
stable against q in X if there is y, 0 < y ≤ 1, such that for all x < y, Ep(x,X) >
Eq(x,X). We say that p is immune to invasion in X if, for all strategies q such
that q 6= p, p is evolutionarily stable against q in X .

It is not difficult to see that every strategy is immune to invasion inX .4 Hence,
once a strategy has dominated the entire population, it cannot be replaced by any
other strategy through the invasion of an initially very small number of mutants.

Strategies, although immune to invasion, are not equivalent in terms of their
expected payoffs. A crucial property of two (different) strategies p, q is the pop-
ulation threshold x0 at which Ep(x0, X) = Eq(x0, X). A slight modification in
the proportions of strategies within a population, x0± ε, provides an advantage to
one of the strategies in terms of communicative fitness.

Figure 1 shows how different strategies are related to each other with regard
to population thresholds in the standard normal environment. Observe that an in-
vading strategy q can outperform p = 0 only at levels xq > 0.5, in other words,
when invaders comprise more than half of the population. However, when p 6= 0,
strategies q, which are closer to the mean than p, can outperform it at lower levels,

3See, for example, Easley and Kleinberg (2010).
4It follows from the linearity of the expected payoff, and from the fact that, for all p, q ∈ R such

that p 6= q, Ep(0, X) = DX,p > DX,p,q = Eq(0, X).
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Figure 1. Population thresholds f(p, q) for pairs of strategies (p, q) in the environment
X ∼ N (0, 1) where f(p, q) = y ⇔ Ep(y,X) = Eq(y,X), for all p, q ∈ R. If xq > f(p, q), q
outperforms p in terms of communicative fitness. If xq < f(p, q), the opposite is true.

indicating that even if the invaders are in the minority, they can still spread across
the novel semantic threshold successfully. It is interesting that, if strategy q is
just a little closer to the mean than is p, the population threshold drops sharply
and attains very small values for ps lying further from the mean, indicating that
overcoming poor conventions should be relatively easy. However, the closer the
prevalent strategy is to the mean, the higher the number of invaders required to
compromise its communicative fitness. A major lesson is that closeness to the
mean is crucial for immunity as understood in terms of population thresholds.
Most importantly, the strategy corresponding to the mean is the most advanta-
geous one in this respect.

By employing replicator dynamics (Hofbauer & Sigmund, 1998), we can ob-
tain insight into how proportions of strategies in a population may change over
time. A slight modification to the population threshold for which the rate of
growth ẋp of the p-subpopulation equals 0 will lead to the total domination of
one strategy. These dynamic variants of population thresholds behave roughly the
same as do the ordinary population thresholds described above (see supplementary
materials).

5. Road to Most

A typical context for a proportionally quantified sentence (Most boys are tall) con-
sists of two sets A,B (the set of boys and the set of tall people, respectively). On
many occasions, as in our example, B consists of instances of a scalar concept.
Based on our previous considerations, assume that first-order scalar concepts have



developed into thresholds equal to the means of the corresponding normally dis-
tributed variables. Let µ be a concept used for the classification of objects with
regard to the property X ∼ N (µ, σ2). Trivially, the probability P (X > µ) of
judging a random deviate of X as member of the concept µ is equal to 1/2.

As in the case of first-order scalar concepts, the variability of contexts is mod-
elled probabilistically. Given a set A consisting of n objects, we envisage that
A ∩ B is obtained from the sequence X1, X2, . . . , Xn of n independent, identi-
cally distributed random variables, Xi ∼ N (µ, σ2), i = 1, 2, . . . , n. Hence, for
an ith object of the set A, P (Xi > µ) = 1/2. As a result, |A ∩ B| is the number
of successes of n independent Bernoulli trials with the probability of success 1/2,
Yn ∼ B(n; 1/2).5 For simplicity, we do not mention A at all, and assume that
each context consists of n objects in total with the number of objects belonging to
B governed by Yn ∼ B(n; 1/2). However, what interests us most is the random
variable Yn/n. It turns out that the mean of Yn/n is 1/2. Based on the normal
approximation to binomial distribution, N (E[Y/n], V ar(Y/n)) may be treated
as a good approximation to Yn/n, provided n is sufficiently large (a liberal rule of
thumb is np ≥ 5 which, for p = 1/2, yields n ≥ 10).

Given a normal approximation Z to Yn/n, the analyses of previous sections
applies to proportional quantifiers. Strategies are proportions from [0, 1]. Strategy
1/2 corresponds to most. In general, the truth conditions corresponding to a strat-
egy r ∈ [0, 1] are given by |A ∩ B|/|A| > r. Hence, the probability that a given
context A,B is classified as true with regard to the threshold r is P (Yn/n > r)
which, in turn, is approximated by P (Z > r). All conclusions obtained in pre-
vious sections thus remain valid for proportional quantifier strategies, and 1/2 is
thus the most advantageous strategy, both in terms of communicative fitness and
immunity to invasion. It can also easily invade strategies that are far from 1/2.

6. Conclusions and Perspectives

We have argued that the meaning of most, the proportional quantifier occurring
so often across so many languages, may be viewed as an adaptation of language
to general communicative principles and distributional properties of the environ-
ment. Our explanation begins with a normality assumption concerning the proper-
ties of individual objects. We show that scalar concepts, when used to refer to such
properties, are likely to develop, and sustain, thresholds close the corresponding
means. Next, we extend our argument to proportional quantifiers. Assuming the
most likely thresholds of first-order scalar concepts, we investigate the probabilis-
tic behaviour of higher-order scalar properties, such as |A ∩ B|/|A|, which are

5Obviously, to obtain a full probabilistic model for generating sets A and B, we should also make
some assumptions about A. However, as long as the variables used to obtain A and B are independent,
our approach remains valid. We can imagine this in the following way: say our context consists of k
objects in total. One variable determines which of the k objects belong to A. The other one selects,
independently, which of the objects in A have also the property B.



crucial in comparisons with threshold proportions of proportional quantifiers. We
show that, when B corresponds to a first-order scalar concept, the probabilistic
behaviour of |A ∩ B|/|A| is approximately normally distributed with a mean of
1/2. This yields precisely 1/2 as the most favourable threshold for a proportional
quantifier—a result that aligns well with the usual interpretations of most.

The present findings contribute to theories according to which languages, dur-
ing their development across various timescales, are driven towards variants ex-
hibiting greater communicative fitness (Christiansen & Chater, 2016a). Our re-
sults reveal that proportional quantifiers are no different in this regard than are
other, less abstract types of constructions investigated so far. This also leads us
to hypothesise that the semantics of quantifiers not mentioned here may be an
adaptation of language to the invariant features of the world.

It is interesting that, as exemplified by our analysis, investigating the influence
of environmental constraints on quantifier meaning requires a parallel, ecologi-
cally valid analysis of such influences on lower-order concepts. This method-
ological caveat follows directly from the fact that the truth value of quantified
sentences depends not only on the meaning of quantifier determiners (denoting
higher-order concepts), but also on the meaning of nouns and verb phrases (de-
noting lower-order concepts) (Barwise & Cooper, 1981).

Communicative pressures are certainly not the only selectional forces that are
important for explaining the evolution of meaning. Another important univer-
sal pressure stems from our cognitive limitations (Christiansen & Chater, 2008,
2016b). Recent insights at the intersection of formal semantics and cognitive sci-
ence show that cognitive constraints influence the verification of quantified sen-
tences (Szymanik, 2016). There are also attempts to explain quantifier seman-
tic universals in terms of learnability pressures (Steinert-Threlkeld & Szymanik,
2017). It seems that enriching evolutionary explanations of quantifier meaning
with plausible cognitive constraints should make the entire picture more accu-
rate.6

Finally, it would be beneficial to validate the formal model proposed in the
paper on authentic data obtained from samples collected experimentally or from
recorded linguistic usage (corpus studies).
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Kalociński, D., Mostowski, M., & Gierasimczuk, N. (2018). Interactive semantic
alignment model: Social influence and local transmission bottleneck. Jour-
nal of Logic, Language and Information. (to appear)

Katsos, N., Cummins, C., Ezeizabarrena, M.-J., Gavarró, A., Kuvač Kraljević, J.,
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